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Precise calculation of the fluid 
velocity is important for porous 
media and other applications. The 
points or lines where the numerical 

solution is super-close to the exact solution 
may be used to improve the accuracy of the 
overall simulation.

The mimetic finite difference method uses 
discrete operators that preserve certain 
critical properties of the original continuum 
differential operators. Conservation laws, 
solution symmetries, and the fundamental 
identities and theorems of vector and tensor 
calculus are examples of such properties. 
This “mimetic” technique has been applied 
successfully to several applications including 
diffusion [1, 2, 3], magnetic diffusion and 
electromagnetics [4], continuum mechanics 
[5], and gas dynamics [6].

A connection between the mimetic finite 
difference method and the mixed finite 
element method with Raviart-Thomas 
finite elements has been established in [7]. 
In particular, it was shown that the scalar 
product in the velocity space proposed in [2] 
for mimetic finite difference methods can be 
viewed as a quadrature rule in the context of 
mixed finite element methods.

In [8], we establish superconvergence of 
the velocity for mimetic finite difference 
approximations of second-order elliptic 
problems over h²-uniform quadrilateral 
meshes in 2D. This superconvergence result 
can be applied to obtain superconvergence 
for the computed velocity at the midpoints 
of the edges in an h² uniform mesh. The 
superconvergence result holds for a full tensor 

coefficient. The analysis exploits the relation 
between mimetic finite differences and 
mixed finite element methods via a special 
quadrature rule for computing the scalar 
product in the velocity space. 

Specifically, the main result in [8] is a 
superconvergence estimate for the velocity 
in a linear second-order elliptic problem that 
models single phase Darcy flow, which is 
usually written as a first-order system for the 
fluid pressure p and velocity u:

 u  =  –K∇p,   in  Ω 
 divu = ,  in  Ω   
 u . n = g,  on  ∂Ω 

where K is a symmetric uniformly positive 
tensor. From this we derive a mimetic finite 
difference method, where the velocity is 
computed at centers of mesh edges, and the 
pressure is computed at centers of cells and 
edges. Our main result for the accuracy of 
this finite difference method is summarized 
as follows. 

For the velocity uH of the mixed finite difference 
method, on h²-uniform quadrilateral grids, 
there exists a positive constant C independent 
of h such that

                        u − u  ≤ Ch², 

where ·  equation needs to be fixed]  is a 
grid norm that is equivalent to the L² norm.  

Our numerical results confirm the theoretical 
superconvergence result. The table shows 
discretization errors of the flux for a sequence 
of globally refined grids of the type that is 
shown in the figure. The convergence rate for 
the flux that is expected, by just considering 
standard theory, is one. Our results show that 
the discrete flux is actually superconvergent, 
namely of second order.
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*A quadrilateral mesh is called h2-uniform if any 
cell and also two neighboring cells combined form  
a parallelogram, up to an h2 error.

Table 1— 
Convergence rates for 
the Neumann boundary 
value problem. 

Figure 1— 
An example of an h2 
uniform mesh.

1/h  
8 8.32e-2 5.47e-2 

16 2.84e-2 1.69e-2 
32 8.84e-3 4.49e-3 
64 2.42e-3 1.14e-3 

128 6.32e-4 2.87e-4 
256 1.61e-4 7.17e-5 
Rate 1.93 1.99 
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